•   按检索    检索词:    高级检索
     排序:相关度 OA 时间 被引次数 点击次数 下载次数 共有10000条符合的查询结果,以下是第1201-1210项 搜索用时 97 毫秒
[首页] « 上一页 [116] [117] [118] [119] [120] 121 [122] [123] [124] [125] [126] 下一页 » 末  页»
1201.
  
针对现有的传染病预测模型未充分考虑时间序列的复杂度且预测性能不稳定等问题,提出一种基于传染病动力学模型SEIR与长短时记忆网络(LSTM)的传染病组合预测模型.首先,通过计算Pearson相关系数分析气候因素与传染病新增人数之间的相关性;其次,通过FE(Fuzzy Entropy… …   相似文献
1202.
  
针对多摄像头重叠场景中行人追踪容易发生身份丢失、切换的问题,本文提出了一种基于YOLOv8和DeepSort的多摄像头跟踪算法.在检测阶段,利用无参注意力机制增强网络对行人特征的提取能力,提高了检测器的性能.在追踪阶段,通过提取两个摄像头的视角关键点,并计算出两个视角的单应性矩阵… …   相似文献
1203.
  
当前,自监督学习技术已成为缓解声纹识别任务有标签训练数据不足问题的主要手段.然而,相关研究目前仅注重学习样本的全局特征,忽略了对样本局部特征的学习.为了解决该问题,本文提出了一种耦合生成式建模和对比式建模的声纹识别自监督框架.该框架不仅保留了对比式建模对所学全局特征的约束,同时引… …   相似文献
1204.
  
对比序列模式挖掘作为序列模式挖掘领域的一个重要分支,可以有效识别不同类别间差异显著的模式,并被广泛应用在序列分类、特征提取等场景中.但传统的对比序列模式挖掘仅考虑了模式在序列中是否出现,忽略了模式在序列中的重复性;并且需要用户预先设置间隙约束值,导致算法的灵活性较差.为了解决上述… …   相似文献
1205.
  
针对传统高维不平衡数据集的分类算法存在偏向多数类、忽视少数类等问题,本文提出一种基于密度聚类和重要性度量的特征选择算法(DBIM).首先通过随机降采样的方法构造出多个平衡子集,使用DBSCAN密度聚类方法作为基分类器生成初始特征子空间.然后按照重要度对特征进行排序选择出较强分类的… …   相似文献
1206.
  
随着互联网技术的普及和发展,用户数据和隐私的保护已经成为一个热门的研究领域。网络空间安全防御从被动防御发展到主动防御,防御性能和成功率获得了显著的提升。然而,传统的被动防御和主动防御本质上都是功能和安全松耦合的外壳式防御,对未知攻击的防御性能较差。网络空间拟态防御(cybersp… …   相似文献
1207.
在计算机视觉分割任务中, 基于Transformer的图像分割模型需要大量的图像数据才能达到最好的性能, 医学图像相对于自然图像, 数据量非常稀少, 而卷积本身具有更高的感应偏差, 使得它更适合医学图像方面的应用. 为了将Transformer的远程表征学习与CNN的感应偏差相结… …   相似文献
1208.
  
目的 近年来,采用神经网络完成立体匹配任务已成为计算机视觉领域的研究热点,目前现有方法存在弱纹理目标缺乏全局表征的问题,为此本文提出一种基于Transformer架构的密集特征提取网络。方法 首先,采用空间池化窗口策略使得Transformer层可以在维持线性计算复杂度的同时,捕获广泛的上下文表示,弥补局部弱纹理导致的特征匮乏问题。其次,通过卷积与转置卷积实现重叠式块嵌入,使得所有特征点都尽可能多地捕捉邻近特征,便于细粒度匹配。再者,通过将跳跃查询策略应用于编码器和解码器间的特征融合部分,以此实现高效信息传递。最后,针对立体像对存在的遮挡情况,对固定区域内的匹配概率进行截断求和,输出更为合理的遮挡置信度。结果 在Scene Flow数据集上进行了消融实验,实验结果表明,本文网络获得了0.33的绝对像素距离,0.92%的异常像素占比和98%的遮挡预测交并比。为了验证模型在实际路况场景下的有效性,在KITTI-2015数据集上进行了补充对比实验,本文方法获得了1.78%的平均异常值百分比,上述指标均优于STTR(stereo Transformer)等主流方法。此外,在KITTI-2015、MPI-Sintel(max planck institute sintel)和Middlebury-2014数据集的测试中,本文模型具备较强的泛化性。结论 本文提出了一个纯粹的基于Transformer架构的密集特征提取器,使用空间池化窗口策略减小注意力计算的空间规模,并利用跳跃查询策略对编码器和解码器的特征进行了有效融合,可以较好地提高Transformer架构下的特征提取性能。… …   相似文献
1209.
  
目的 彩色图像的灰度化是计算机视觉领域的研究热点。针对传统彩色图像灰度化方法得到的灰度图像存在对比度保持不足、细节模糊及层次感欠缺等问题,本文结合t分布随机邻域嵌入(t-distributed stochastic neighbor embedding,t-SNE)提出了一种更加简单、高效的彩色图像灰度化新方法。方法 首先,将t-SNE降维思想引入到彩色图像的灰度化过程中,设计了一种基于t-SNE最大化的彩色图像灰度化新模型,通过最大化能量函数使原始彩色图像中对比度较小的区域在灰度化后其对比度能够适当地变大或保持,让灰度图像更好地保持原始彩色图像的对比度特征和层次感。其次,在新模型中设计了一种自适应的对比度保持策略,根据颜色对比度信息来自适应地调节原始彩色图像不同区域的灰度化力度,更好地保留原始彩色图像的细节和对比度信息。最后,采用了一种高效的离散搜索方法以快速求解所提新模型。结果 基于Cadik、CSDD(complex scene decolorization dataset)和Color250数据集的大量实验结果表明,与传统方法相比,本文方法得到的灰度图像具有更好的表现,在颜色对比度保持率(color contrast preserving ratio, CCPR)指标上,本文方法在上述3个数据集上的平均CCPR值最高,分别为0.874、0.862和0.864。另外,在相同硬件上测试不同灰度化方法的运行效率时,本文方法的运行时间最短。结论 相较于传统灰度化方法,本文方法不仅能够更好地保持原始彩色图像的对比度、细节特征和层次感,而且在主观评价和客观评价方面均有更好的表现。… …   相似文献
1210.
基于深度学习的表面缺陷检测技术是工业上的一项重要应用, 而缺陷图像数据集质量对缺陷检测性能有重要影响. 为解决实际工业生产过程中缺陷样本获取成本高、缺陷数据量少的痛点, 提出了一种基于去噪扩散概率模型(Denoising diffusion probabilistic model… …   相似文献
岳忠牧  张喆  吕武  赵瑞祥  马杰 《自动化学报》2024,50(8):1539-1549
[首页] « 上一页 [116] [117] [118] [119] [120] 121 [122] [123] [124] [125] [126] 下一页 » 末  页»