2313.
目的 图像合成方法随着计算机视觉的不断发展和深度学习技术的逐渐成熟为人们的生活带来了丰富的体验。然而,用于传播虚假信息的恶意篡改图像可能对社会造成极大危害,使人们对数字内容在图像媒体中的真实性产生怀疑。面部编辑作为一种常用的图像篡改手段,通过修改面部的五官信息来伪造人脸。图像修复技术是面部编辑常用的手段之一,使用其进行面部伪造篡改同样为人们的生活带来了很大干扰。为了对此类篡改检测方法的相关研究提供数据支持,本文制作了面向人脸修复篡改检测的大规模数据集。
方法 具体来说,本文选用了不同质量的源数据集(高质量的人脸图像数据集CelebA-HQ及低质量的人脸视频数据集FF++),通过图像分割方法将面部五官区域分割,最后使用两种基于深度网络的修复方法CTSDG(image inpainting via conditional texture and structure dual generation)和RFR(recurrent feature reasoning for image inpainting)以及一种传统修复方法SC(struct completion),生成总数量达到60万幅的大规模修复图像数据集。
结果 实验结果表明,由FF++数据集生成的图像在基准检测网络ResNet-50下的检测精度下降了15%,在Xception-Net网络下检测精度下降了5%。且不同面部部位的检测精度相差较大,其中眼睛部位的检测精度最低,检测精度为0.91。通过泛化性实验表明,同一源数据集生成的数据在不同部位的修复图像间存在一定的泛化性,而不同的源数据制作的数据集间几乎没有泛化性。因此,该数据集也可为修复图像之间的泛化性研究提供研究数据,可以在不同数据集、不同修复方式和不同面部部位生成的图像间进行修复图像的泛化性研究。
结论 基于图像修复技术的篡改方式在一定程度上可以骗过篡改检测器,对于此类篡改方式的检测方法研究具有现实意义。提供的大型基于修复技术的人脸篡改数据集为该领域的研究提供了新的数据来源,丰富了数据多样性,为深入研究该类型的人脸篡改和检测方法提供了有力的基准。数据集开源地址https://pan.baidu.com/s/1-9HIBya9X-geNDe5zcJldw?pwd=thli。… …
相似文献