•   按检索    检索词:    高级检索
     排序:相关度 OA 时间 被引次数 点击次数 下载次数 共有10000条符合的查询结果,以下是第9061-9070项 搜索用时 142 毫秒
[首页] « 上一页 [902] [903] [904] [905] [906] 907 [908] [909] [910] [911] [912] 下一页 » 末  页»
9061.
知识图谱问答任务通过问题分析与知识图谱推理,将问题的精准答案返回给用户,现已被广泛应用于智能搜索、个性化推荐等智慧信息服务中.考虑到关系监督学习方法人工标注的高昂代价,学者们开始采用强化学习等弱监督学习方法设计知识图谱问答模型.然而,面对带有约束的复杂问题,现有方法面临两大挑战:… …   相似文献
毕鑫  聂豪杰  赵相国  袁野  王国仁 《软件学报》2023,34(10):4565-4583
9062.
  
针对带限制的低碳多式联运路径规划问题的研究,在考虑模糊需求和碳排放量约束的条件下构建了路径成本、碳排放量等目标最小化的多目标多式联运数学模型。首先,根据模型特点使用机会约束规划处理用梯形模糊数表示的不确定需求;其次,改进了哈里斯鹰算法,采用路径重连算法、两种交叉算子和两种变异算子… …   相似文献
黄琴  张惠珍 《计算机应用研究》2023,40(10):2978-2983+2999
9063.
  
为知识图谱(Knowledge Graph, KG)生成自然语言描述是自然语言处理中的一项重要任务,被称为知识图谱到文本(KG-to-Text)生成.现有方法在编码知识图谱时损失了一定的图结构信息,导致生成文本的质量不高.在Transformer模型的基础上,本文提出一种层次视野… …   相似文献
9064.
  
目的 车辆多目标跟踪是智能交通领域关键技术,其性能对车辆轨迹分析和异常行为鉴别有显著影响。然而,车辆多目标跟踪常受外部光照、道路环境因素影响,车辆远近尺度变化以及相互遮挡等干扰,导致远处车辆漏检或车辆身份切换(ID switch,IDs)问题。本文提出短时记忆与CenterTrack的车辆多目标跟踪,提升车辆多目标跟踪准确度(multiple object tracking accuracy,MOTA),改善算法的适应性。方法 利用小样本扩增增加远处小目标车辆训练样本数;通过增加的样本重新训练CenterTrack确定车辆位置及车辆在相邻帧之间的中心位移量;当待关联轨迹与检测目标匹配失败时通过轨迹运动信息预测将来的位置;利用短时记忆将待关联轨迹按丢失时间长短分级与待匹配检测关联以减少跟踪车辆IDs。结果 在交通监控车辆多目标跟踪数据集UA-DETRAC (University at Albany detection and tracking)构建的5个测试序列数据中,本文方法在维持CenterTrack优势的同时,对其表现不佳的场景获得近30%的提升,与YOLOv4-DeepSort(you only look once—simple online and realtime tracking with deep association metric)相比,4种场景均获得近10%的提升,效果显著。Sherbrooke数据集的测试结果,本文方法同样获得了性能提升。结论 本文扩增了远处小目标车辆训练样本,缓解了远处小目标与近处大目标存在的样本不均衡,提高了算法对远处小目标车辆的检测能力,同时短时记忆维持关联失败的轨迹运动信息并分级匹配检测目标,降低了算法对跟踪车辆的IDs,综合提高了MOTA。… …   相似文献
9065.
  
目的 输电线路金具种类繁多、用处多样,与导线和杆塔安全密切相关。评估金具运行状态并实现故障诊断,需对输电线路金具目标进行精确定位和识别,然而随着无人机巡检采集的数据逐渐增多,将全部数据进行人工标注愈发困难。针对无标注数据无法有效利用的问题,提出一种基于自监督E-Swin Transformer (efficient shifted windows Transformer)的输电线路金具检测模型,充分利用无标注数据提高检测精度。方法 首先,为了减少自注意力的计算量、提高模型计算效率,对Swin Transformer自注意力计算进行优化,提出一种高效的主干网络E-Swin。然后,为了利用无标注金具数据加强特征提取效果,针对E-Swin设计轻量化的自监督方法,并进行预训练。最后,为了提高检测定位精度,采用一种添加额外分支的检测头,并结合预训练之后的主干网络构建检测模型,利用少量有标注的数据进行微调训练,得到最终检测结果。结果 实验结果表明,在输电线路金具数据集上,本文模型的各目标平均检测精确度(AP50)为88.6%,相比传统检测模型提高了10%左右。结论 本文改进主干网络的自注意力计算,并采用自监督学习,使模型高效提取特征,实现无标注数据的有效利用,构建的金具检测模型为解决输电线路金具检测的数据利用问题提供了新思路。… …   相似文献
9066.
针对频谱图对于音乐特征挖掘较弱、深度学习分类模型复杂且训练时间长的问题,设计了一种基于频谱增强和卷积宽度学习(CNNBLS)的音乐流派分类模型.该模型首先通过SpecAugment中随机屏蔽部分频率信道的方法增强梅尔频谱图,再将切割后的梅尔频谱图作为CNNBLS的输入,同时将指数… …   相似文献
9067.
在面向对象的软件开发过程中,统一建模语言(unified modeling language, UML)的用例图用于捕获用户的需求.传统描述用例的方法一般是开发者根据自己的经验,从需求中人工获取用例.然而,如何自动生成准确的用例仍然是一个待解决的问题.本文提出了一种通过用UML活… …   相似文献
9068.
  
目的 现有方法存在特征提取时间过长、非对称失真图像预测准确性不高的问题,同时少有工作对非对称失真与对称失真立体图像的分类进行研究,为此提出了基于双目竞争的非对称失真立体图像质量评价方法。方法 依据双目竞争的视觉现象,利用非对称失真立体图像两个视点的图像质量衰减程度的不同,生成单目图像特征的融合系数,融合从左右视点图像中提取的灰度空间特征与HSV (hue-saturation-value)彩色空间特征。同时,量化两个视点图像在结构、信息量和质量衰减程度等多方面的差异,获得双目差异特征。并且将双目融合特征与双目差异特征级联为一个描述能力更强的立体图像质量感知特征向量,训练基于支持向量回归的特征—质量映射模型。此外,还利用双目差异特征训练基于支持向量分类模型的对称失真与非对称失真立体图像分类模型。结果 本文提出的质量预测模型在4个数据库上的SROCC (Spearman rank order correlation coefficient)和PLCC (Pearson linear correlation coefficient)均达到0.95以上,在3个非对称失真数据库上的均方根误差(root of mean square error,RMSE)取值均优于对比算法。在LIVE-II(LIVE 3D image quality database phase II)、IVC-I(Waterloo-IVC 3D image qualityassessment database phase I)和IVC-II (Waterloo-IVC 3D image quality assessment database phase II)这3个非对称失真立体图像测试数据库上的失真类型分类测试中,对称失真立体图像的分类准确率分别为89.91%、94.76%和98.97%,非对称失真立体图像的分类准确率分别为95.46%,92.64%和96.22%。结论 本文方法依据双目竞争的视觉现象融合左右视点图像的质量感知特征用于立体图像质量预测,能够提升非对称失真立体图像的评价准确性和鲁棒性。所提取双目差异性特征还能够用于将对称失真与非对称失真立体图像进行有效分类,分类准确性高。… …   相似文献
9069.
  
目的 针对行人轨迹预测问题,已有的几种结合场景信息的方法基于合并操作通过神经网络隐式学习场景与行人运动的关联,无法直观地解释场景对单个行人运动的调节作用。除此之外,基于图注意力机制的时空图神经网络旨在学习全局模式下行人之间的社会交互,在人群拥挤场景下精度不佳。鉴于此,本文提出一种场景限制时空图卷积神经网络(scene-constrained spatial-temporal graph convolutional neural network,Scene-STGCNN)。方法 Scene-STGCNN由运动模块、基于场景的微调模块、时空卷积和时空外推卷积组成。运动模块以时空图卷积提取局部行人时空特征,避免了时空图神经网络在全局模式下学习交互的局限性。基于场景的微调模块将场景信息嵌入为掩模矩阵,用来调节运动模块生成的中间运动特征,具备实际场景下的物理解释性。通过最小化核密度估计下真实轨迹的负对数似然,增强Scene-STGCNN输出的多模态性,减少预测误差。结果 实验在公开数据集ETH (包含ETH和HOTEL)和UCY (包含UNIV、ZARA1和ZARA2)上与其他7种主流方法进行比较,就平均值而言,相对于性能第2的模型,平均位移误差(average displacement error,ADE)值减少了12%,最终位移误差(final displacement error,FDE)值减少了9%。在同样的数据集上进行了消融实验以验证基于场景的微调模块的有效性,结果表明基于场景的微调模块能有效建模场景对行人轨迹的调节作用,从而减小算法的预测误差。结论 本文提出的场景限制时空图卷积网络能有效融合场景和行人运动,在学习局部模式下行人交互的同时基于场景特征对轨迹特征做实时性调节,相比于其他主流方法,具有更优的性能。… …   相似文献
9070.
  
目的 胸腔积液肿瘤细胞团块的分割对肺癌的筛查有着积极作用。胸腔积液肿瘤细胞团块显微图像存在细胞聚集、对比度低和边界模糊等问题,现有网络模型进行细胞分割时无法达到较高精度。提出一种基于UNet网络框架,融合过参数卷积与注意力机制的端到端语义分割模型DOCUNet (depthwise over-parameterized CBAM UNet)。方法 将UNet网络中的卷积层替换为过参数卷积层。过参数卷积层结合了深度卷积和传统卷积两种卷积,保证网络深度不变的同时,提高模型对图像特征的提取能力。在网络底端的过渡区域,引入结合了通道注意力与空间注意力机制的注意力模块CBAM (convolutional block attention module),对编码器提取的特征权重进行再分配,增强模型的分割能力。结果 在包含117幅显微图像的胸腔积液肿瘤细胞团块数据集上进行5折交叉实验。平均IoU (intersection over union)、Dice系数、精确率、召回率和豪斯多夫距离分别为0.858 0、0.920 4、0.928 2、0.920 3和18.17。并且与UNet等多种已存在的分割网络模型进行对比,IoU、Dice系数和精确率、召回率相较于UNet提高了2.80%、1.65%、1.47%和1.36%,豪斯多夫距离下降了41.16%。通过消融实验与类激活热力图,证明加入CBAM注意力机制与过参数卷积后能够提高网络分割精度,并能使网络更加专注于细胞的内部特征。结论 本文提出的DOCUNet将过参数卷积和注意力机制与UNet相融合,实现了胸水肿瘤细胞团块的有效分割。经过对比实验证明所提方法提高了细胞分割的精度。… …   相似文献
[首页] « 上一页 [902] [903] [904] [905] [906] 907 [908] [909] [910] [911] [912] 下一页 » 末  页»