如今,科学研究已从计算科学时代进入数据科学时代. 从海量数据中发现规律和突破科学发展瓶颈是数据科学范式的主要目标. 与此同时,高性能计算机(HPC)也越来越重视智能算力,在传统高性能计算方法的基础上融合人工智能算法(HPC+AI),更有利于在数据科学时代解决实际问题,并能充分发挥高性能计算机的智能算力. 不过,在国产HPC系统——特别是面向由新一代国产异构众核处理器sw26010pro构建的HPC系统——上支撑HPC+AI领域应用,则面临着诸多挑战. 提出了一种面向国产异构众核处理器的数据流计算系统swFLOWpro,支持使用TensorFlow接口构建数据流程序,实现对用户透明的众核加速,并实现了面向全处理器视角的两级并行策略. 经测试,系统针对典型核心计算,单核组众核加速比最高可达545倍、典型模型众核加速比最高可达346倍,全片6核组并行执行ResNet50模型训练,对比单核组加速比达到4.96倍,并行效率82.6%. 实验表明,swFLOWpro能够支持以深度学习为代表的数据流程序在国产异构众核处理器上的高效运行.
… … 相似文献近年来,随着物联网(Internet of things, IoT)设备的大规模部署,针对物联网设备的恶意代码也不断出现,物联网安全面临来自恶意代码的巨大威胁,亟需对物联网恶意代码检测技术进行综合研究. 随着人工智能(artificial intelligence, AI)在计算机视觉和自然语言处理等领域取得了举世瞩目的成就,物联网安全领域也出现了许多基于人工智能的恶意代码检测工作. 通过跟进相关研究成果,从物联网环境和设备的特性出发,提出了基于该领域研究主要动机的分类方法,从面向物联网设备限制缓解的恶意代码检测和面向性能提升的物联网恶意代码检测2方面分析该领域的研究发展现状. 该分类方法涵盖了物联网恶意代码检测的相关研究,充分体现了物联网设备独有的特性以及当前该领域研究存在的不足. 最后通过总结现有研究,深入讨论了目前基于人工智能的恶意代码检测研究中存在的问题,为该领域未来的研究提出了结合大模型实现物联网恶意代码检测,提高检测模型安全性以及结合零信任架构3个可能的发展方向.
… … 相似文献