1165.
目的 在复杂背景下,传统轮廓跟踪方法只考虑了目标的整体特征或显著性特征,没有充分利用目标的局部特征信息,尤其是目标发生遮挡时,容易发生跟踪漂移,甚至丢失目标.针对上述问题,提出一种基于局部模型匹配的几何活动轮廓(LM-GAC)跟踪算法.
方法 首先,利用超像素技术将图像中的颜色特征相似的像素点归为一类,形成由一些像素点组成的超像素,从而把目标分割成若干个超像素块,再结合EMD(earth mover's distance)相似性度量构建局部特征模型.然后,进行局部模型匹配,引入噪声模型来估算局部模型参数
θ,这样可以增强特征模型的自适应性,提高局部模型匹配的准确性.最后,结合粒子滤波的水平集分割方法提取目标轮廓,实现目标轮廓精确跟踪.
结果 本文算法与多种目标轮廓跟踪算法进行对比,在部分遮挡、目标形变、光照变化、复杂背景等条件的基准图像序列均具有较高的跟踪成功率,平均成功率为79.6%.
结论 实验结果表明,根据不同的图像序列,可以自适应地实时改变噪声模型参数和粒子的权重,使得本文算法具有较高的准确性和鲁棒性.特别是在复杂的背景下,算法能较准确地进行目标轮廓跟踪.… …
相似文献