1191.
目的 传统的极化SAR图像分割方法中,由于采用的统计分布模型不能较好地描述高分辨率的图像纹理特征,导致高分辨率极化SAR图像分割效果较差。针对这个问题,本文将具有广泛适用性的KummerU分布嵌入到水平集极化SAR图像分割方法中,提出了一种新的极化SAR图像分割算法。
方法 将KummerU分布作为高分辨率极化SAR图像的统计模型,定义一种适用于极化SAR图像分割的能量泛函;利用最大似然法对各个区域的KummerU分布进行参数估计,并通过数值偏微分方程的方法求解水平集函数,实现极化SAR图像的区域分割。
结果 分别对仿真全极化数据,真实全极化数据进行分割实验,结果表明本文提出的方法其分割精度高于传统方法,分割精度高于95%,从而验证了新方法的有效性。
结论 本文算法能够对各向同质区和各向异质区的极化SAR图像都能取得良好的分割效果,并适应于多种场景,有效地分割出背景和目标。… …
相似文献