1644.
目的 在目标跟踪过程中,运动信息可以预测目标位置,忽视目标的运动信息或者对其运动方式的建模与实际差异较大,均可能导致跟踪失败。针对此问题,考虑到视觉显著性具有将注意快速指向感兴趣目标的特点,将其引入目标跟踪中,提出一种基于时空运动显著性的目标跟踪算法。
方法 首先,依据大脑视皮层对运动信息的层次处理机制,建立一种自底向上的时空运动显著性计算模型,即通过3D时空滤波器完成对运动信号的底层编码、最大化汇集算子完成运动特征的局部编码;利用视频前后帧之间的时间关联性,通过时空运动特征的差分完成运动信息的显著性度量,形成时空运动显著图。其次,在粒子滤波基本框架之下,将时空运动显著图与颜色直方图相结合,来衡量不同预测状态与观测状态之间的相关性,从而确定目标的状态,实现目标跟踪。
结果 与其他跟踪方法相比,本文方法能够提高目标跟踪的中心位置误差、精度和成功率等指标;在光照变化、背景杂乱、运动模糊、部分遮挡及形变等干扰因素下,仍能够稳定地跟踪目标。此外,将时空运动显著性融入其他跟踪方法,能够改善跟踪效果,进一步验证了运动显著性对于运动目标跟踪的有效性。
结论 时空运动显著性可以有效度量目标的运动信息,增强运动显著的目标区域,抑制干扰区域,从而提升跟踪性能。… …
相似文献