4176.
目的 图像分割是图像处理领域的重要研究内容之一,且应用广泛。在基于PDE和变分法的图像分割方法中,大部分图像分割模型的能量泛函均为非凸性,较容易陷入局部极小解,因而分割结果往往不尽如人意,且运算时间较慢。为此,本文根据背景去除模型的思想结合区域拟合的方法,提出了一种区域拟合的背景去除图像分割模型。
方法 首先对背景去除模型进行改造;再结合区域拟合的方法对模型进行改进,并对改进模型进行凸优化处理;最后结合水平集和Split Bregman法对改进模型进行快速求解,获得全局最小值解。
结果 针对改进模型在分割效果、计算效率及初始化位置对实验结果的影响这3个方面了进行数值实验,相较于ICV(improved Chan-Vese)模型、LK(Li-Kim)模型及CV(Chan-Vese)模型,本文模型能得到更优的分割效果,且在分割效果相似的情况下,本文模型较RSF(region-scalable fitting)模型耗时更短,同时当实验初始化位置不同时,实验亦能取得良好的分割效果。
结论 在对于MRI(magnetic resonance imaging)图像以及合成图像等进行处理时,本文所给出的模型不仅能获得良好的分割效果,并且效率较高,而且从实验结果来看,本文模型具有一定的鲁棒性。… …
相似文献