4387.
目的 当前大多数基于Mean-shift的跟踪算法都忽视了目标中密集的特征信息,本文有效利用密集特征信息,来提高跟踪的准确性.
方法 在目标模型中,常存在一些颜色特征相对聚集,形成一定大小的特征密集区,这些区域的面积或大或小,对人眼视觉跟踪异常重要.这些区域形成的空间结构信息,可以被利用到目标跟踪.提出一种高效的目标模型,通过计算密集特征区域面积,以及密集区质心到目标中心的距离,构建加权系数,通过该系数,来增加目标中分布相对集中的特征的权值,同时削弱离散特征的权值.同时使用零阶矩和目标模型与候选模型之间的相似度系数,估算目标的面积;再使用预测目标面积补偿法,对目标中因使用背景加权法而权重被削弱的特征区域,进行面积补偿;最后使用估算的目标区域面积以及二阶中心距,估算目标尺度和方向的改变.在跟踪过程中,背景如发生较大变化,则对目标模型进行更新.
结果 本文算法具有很好的尺度适应性,跟踪平均准确率在94.6%以上,得到较当前一些先进方法更好的准确度和效率.
结论 提出的算法能增加目标模型中不同特征权值间的差异,使得构建的目标模型具有较强区分目标和背景的能力,提高了定位目标的准确性;面积补偿法解决了目标因特征权重被削弱,而导致估算的目标面积小于实际面积的问题.… …
相似文献