5475.
目的 为更好地兼顾基于手动设置的二进制特征描述子优越的实时性能和基于优化学习的二进制特征描述子鲁棒的区分性能,提出一种快速优化筛选多尺度矩形域的二进制描述算法(MRFO),运用于识别卫星装配时所需的典型工件目标。
方法 按像素的灰度值和梯度方向划分图像并利用不同的高斯核函数进行平滑,建立多尺度的子图像集合;从多尺度的子图像中,快速通过约束条件提取候选矩形域;在训练阶段,通过优化学习计算候选矩形域的相关得分及最优阈值,筛选出其中具有强区分性和低相关性的集合;在测试阶段,计算筛选出的矩形域响应值并利用最优阈值进行二值化,将结果依次串联构成二进制描述向量。
结果 实验通过ROC曲线图和80%精确率条件下的召回率统计结果证明MRFO描述算法具有优越的区分性能,平均的精确度能够高出对比算法8%~12%;并在真实的视频图像中利用MRFO描述算法识别出典型工件目标;根据训练阶段的执行时间只有传统优化学习算法的4.35%,只是在测试阶段略高于手动设置的二进制描述算法,证明MRFO描述算法具有优良的实时性能。
结论 MRFO描述算法能够更好地克服各种视角、尺度和旋转变换的干扰以及周围相似背景信息的影响,准确识别出典型工件目标,有助于提高卫星的地面装配精度和效率,改善国内相关行业的自动化水平。普遍适用性较强,具有良好的应用前景。… …
相似文献