5535.
目的压缩感知信号重构过程是求解不定线性系统稀疏解的过程。针对不定线性系统稀疏解3种求解方法不够鲁棒的问题:最小化l
0-范数属于NP问题,最小化l
1-范数的无解情况以及最小化l
p-范数的非凸问题,提出一种基于光滑正则凸优化的方法进行求解。方法为了获得全局最优解并保证算法的鲁棒性,首先,设计了全空间信号l
0-范数凸拟合函数作为优化的目标函数;其次,将n元函数优化问题转变为n个一元函数优化问题;最后,求解过程中利用快速收缩算法进行求解,使收敛速度达到二阶收敛。结果该算法无论在仿真数据集还是在真实数据集上,都取得了优于其他3种类型算法的效果。在仿真实验中,当信号维数大于150维时,该方法重构时间为其他算法的50%左右,具有快速性;在真实数据实验中,该方法重构出的信号与原始信号差的F-范数为其他算法的70%,具有良好的鲁棒性。结论本文算法为二阶收敛的凸优化算法,可确保快速收敛到全局最优解,适合处理大型数据,在信息检索、字典学习和图像压缩等领域具有较大的潜在应用价值。… …
相似文献