5930.
目的 作为计算机视觉的热门研究方向,局部不变特征算法的发展已趋于成熟、稳定,然而目前几乎所有特征点提取算法都没有给出特征点的精度指标.针对这一缺陷,提出一种特征点精度指标-特征点波动区间.
方法 性质稳定的点在干扰条件下仍具有较好的精度,即小范围的波动区间,因此,以当前最热门的SIFT(scale-invariant feature transform)特征点为例,在图像加入噪声,发生光照变换,发生模糊变换以及同时进行噪声、光照及模糊处理这四种情况下分别分析同一算法提取的不同特征点的波动情况,进而得到不同特征点的波动区间.
结果 实验得到16个稳定检出特征点,其中点2,3,4,11,13这5个点可以在不同干扰条件下的波动范围都较小,而点2则只在模糊条件下波动较小,在其余干扰下波动较大.特征点虽然已经过特征提取,但仍具有不同的波动区间,其优劣也不尽相同.不同的特征点的波动区间并不相同,但仍有一部分特征点在不同干扰条件下均保持较高的提取精度.
结论 波动区间能很好地表征每个特征点的提取精度.由于此前只有针对特征点算法的评价指标,而没有针对特征点自身性质的评价方法,因此本文提出的特征点波动区间将为诸如设备标定、视觉测量、精简特征库等相关后续工作打下良好基础.… …
相似文献