6493.
目的 传统的多示例学习跟踪在跟踪过程中使用了自学习过程,当目标跟踪失败时分类器很容易退化。针对这个问题,提出一种基于在线特征选取的多示例学习跟踪方法(MILOFS)。
方法 首先,该文使用稀疏随机矩阵来简化视频跟踪中图像特征的构建,使用随机矩阵投影来自高维度的图像信息。然后,利用Fisher线性判别模型构建包模型的损失函数,依照示例响应值直接在示例水平构建分类器的判别模型。最后,从梯度下降角度看待在线增强模型,使用梯度增强法来构建分类器的选取模型。
结果 对不同场景的图像序列进行对比实验,实验结果中在线自适应增强(OAB)、在线多实例学习跟踪(MILTrack)、加权多实例学习跟踪(WMIL)、在线特征选取多实例学习跟踪(MILOFS)的平均跟踪误差分别为36像素、23像素、24像素、13像素,本文算法在光照变化、发生遮挡,以及形变的情况下都能准确跟踪目标,且具有很高的实时性。
结论 基于在线特征选取的多示例学习跟踪,跟踪过程使用梯度增强法并直接在示例水平构建包模型的判别模型,可以有效克服传统多示例学习中的分类器退化问题。… …
相似文献