7257.
目的 协作表达分类算法在人脸识别实验上表现出较好的性能,但其未考虑样本的局部特性,且算法只能处理测试样本中的噪声,未能有效处理训练样本集中的噪声.针对这两个问题,提出融合局部思想和协作表达的鲁棒分类算法.
方法 一方面,在训练集上,通过奇异值分解SVD得到其有效表达,丢弃一些噪声;另一方面,算法考虑数据的局部相似性,以保持测试样本与其相邻训练样本之间的相似性.
结果 本文算法能得到一个闭式(closed-form),可避免稀疏表示分类算法中由于迭代引起的高时间复杂度问题,在ORL、扩展YALEB和PIE人脸库上的识别率分别可达91.4%,93.8%和93.2%,与同类算法相比识别率有较大幅度地提高;实验结果验证了算法所得到的系数具有较高的判别能力.
结论 算法将训练样本进行奇异值分解得到“干净”的训练样本,能在一定程度上消除噪声的影响,且在协作表达的基础上,考虑测试样本和与之相邻的训练样本的局部相似性,相比原始的协作表达分类算法有更好的稳定性和鲁棒性.… …
相似文献