7280.
目的 在复杂背景下,传统模型匹配的跟踪方法只考虑了目标自身特征,没有充分考虑与其所处图像的关系,尤其是目标发生遮挡时,易发生跟踪漂移,甚至丢失目标。针对上述问题,提出一种前景判别的局部模型匹配(FDLM)跟踪算法。
方法 首先选取图像帧序列前
m帧进行跟踪训练,将每帧图像分割成若干超像素块。然后,将所有的超像素块组建向量簇,利用判别外观模型建立包含超像素块的目标模型。最后,将建立的目标模型作为匹配模板,采用期望最大化(EM)估计图像的前景信息,通过前景判别进行局部模型匹配,确定跟踪目标。
结果 本文算法在前景判别和模型匹配等方面能准确有效地适应视频场景中目标状态的复杂变化,较好地解决各种不确定因素干扰下的跟踪漂移问题,和一些优秀的跟踪算法相比,可以达到相同甚至更高的跟踪精度,在Girl、Lemming、Liquor、Shop、Woman、Bolt、CarDark、David以及Basketball视频序列下的平均中心误差分别为9.76、28.65、19.41、5.22、8.26、7.69、8.13、11.36、7.66,跟踪重叠率分别为0.69、0.61、0.77、0.74、0.80、0.79、0.79、0.75、0.69。
结论 实验结果表明,本文算法能够自适应地实时更新噪声模型参数并较准确估计图像的前景信息,排除背景信息干扰,在部分遮挡、目标形变、光照变化、复杂背景等条件下具有跟踪准确、适应性强的特点。… …
相似文献