7301.
下载全文 总被引:1,自引:0,他引:1
目的 高光谱图像分辨率高,数据量大,信息的冗余程度高,给数据处理带来了很大的困难。为了高效地实现数据降维,使降维后的数据冗余度小且信息量大,提出一种基于组合因子最优的波段选择方法。
方法 首先对高光谱数据进行波段子空间划分,在各子空间中通过线性预测误差来计算误差最小和次小的两个波段,结合它们的标准差,计算出它们的组合因子,通过比较组合因子来决定所要去除的波段。
结果 该方法的计算效率高,相同条件下计算时间比最快的方法有轻微的减少。使用支持向量机(SVM)对波段子集分类,并将该方法与其他方法进行分类准确率比较,相同条件下比其他方法的最高准确率有1.5%的提升。
结论 组合因子的方法综合考虑了波段子集的最小冗余度和最大信息量,得到了较好的波段子集,并且有较小的计算复杂度,适用于AVIRIS (airborne visible infrared imaging spectrometer)等各种高光谱图像数据。… …
相似文献