7479.
目的 稀疏表示在遥感图像融合上取得引人注目的良好效果,但由于经典稀疏表示没有考虑图像块与块之间的相似性,导致求解出的稀疏系数不够准确及字典学习的计算复杂度高。为提高稀疏表示遥感图像融合算法的效果和快速性,提出一种基于结构组稀疏表示的遥感图像融合方法。
方法 首先,将相似图像块组成结构组,再通过组稀疏表示算法分别计算亮度分量和全色图像的自适应组字典和组稀疏系数;然后,根据绝对值最大规则进行全色图像稀疏系数的部分替换得到新的稀疏系数,利用全色图像的组字典和新的稀疏系数重构出高空间分辨率亮度图像;最后,应用通用分量替换(GCOS)框架计算融合后的高分辨率多光谱图像。
结果 针对3组不同类型遥感图像的全色图像和多光谱图像分别进行了退化和未退化遥感融合实验,实验结果表明:在退化融合实验中,本文方法的相关系数、均方根误差、相对全局融合误差、通用图像质量评价指标和光谱角等评价指标比传统的融合算法更优越,其中相对全局融合误差分别是2.326 1、1.888 5和1.816 8均远低于传统融合算法;在未退化融合实验中,除了在绿色植物融合效果上略差于AWLP(additive wavelet luminance proportional)方法外,其他融合结果仍占有优势。与经典稀疏表示方法相比,由于字典学习的优越性,计算复杂度上要远低于经典稀疏表示的遥感图像融合算法。
结论 本文算法更能保持图像的光谱特性和空间信息,适用于不同类型遥感图像的全色图像和多光谱图像融合。… …
相似文献