7514.
目的 目前有很多研究B样条曲线的含参数扩展,给出的曲线都具备B样条曲线的局部形状控制性以及独立于控制顶点的形状可调性,但有些文献给出的参数是全局的,导致曲线不具备局部形状调整性,有些文献给出的调配函数不具有全正性,导致曲线不具备变差缩减性、保凸性。本文的出发点是构造同时具备保凸性、局部形状调整性、局部形状控制性的曲线。
方法 首先运用拟扩展函数空间的理论框架证明了已有的3次Bézier曲线的扩展基,简称
λμ-Bernstein基,恰好为所在空间中的规范B基。然后运用
λμ-Bernstein基的线性组合来构造3次均匀B样条曲线的扩展基,根据预设的曲线性质反推出扩展基的性质,进而求出线性组合的系数,得出扩展基的表达式。扩展基可以表示成
λμ-Bernstein基与一个转换矩阵的乘积,证明了转换矩阵的全正性,由扩展基定义了一种结构与3次B样条曲线相同的含一个局部形状参数的分段曲线。
结果 转换矩阵的全正性决定了扩展基的全正性,扩展基的全正性决定了扩展曲线的变差缩减性、保凸性,形状参数的局部性决定了曲线的局部形状调整性,曲线的分段结构决定了曲线的局部形状控制性。
结论 本文给出的构造具有全正性的B样条扩展基的方法具有一般性,与现有众多扩展曲线相比,本文方法构造的曲线因为具有变差缩减性和保凸性,从而为保形设计提供了一种有效方法。… …
相似文献