778.
下载全文 总被引:1,自引:3,他引:1
目的 当前大多数基于稀疏表示的跟踪方法只考虑全局特征或局部特征的最小重构误差,没有充分利用稀疏编码系数,或者忽略了字典判别性的作用,尤其当目标被相似物遮挡时,往往会导致跟踪目标丢失。针对上述问题,提出一种新的基于判别式字典和加权局部特征的稀疏外观模型(SPAM-DDWF)跟踪算法。
方法 首先利用Fisher准则学习判别式字典,对提取的局部特征进行结构性分析来区分目标和背景,其次,提出一种新的基于加权的相似性度量方法来处理遮挡问题,从而提高跟踪的精确度。此外,基于重构系数的权重更新策略,使算法能更好地适应跟踪目标的外观变化,并降低了遮挡发生时跟踪漂移的概率。
结果 在多个基准图像序列上,与多种流行方法对比,本文算法在光照变化、复杂背景、遮挡等场景中保持较高的跟踪成功率与较低的漂移误差。平均成功率和漂移误差分别为76.8%和3.7。
结论 实验结果表明,本文算法具有较好的有效性和鲁棒性,尤其在目标被相似物遮挡的情况下,也能较准确地跟踪到目标。… …
相似文献