8027.
目的 近年来,目标跟踪领域取得了很大进步,但是由于尺度变化,运动,形状畸变或者遮挡等造成的外观变化,仍然是目标跟踪中的一大挑战,因而有效的图像表达方法是提高目标跟踪鲁棒性的一个关键因素。
方法 从中层视觉角度出发,首先对训练图像进行超像素分割,将得到特征向量集以及对应的置信值作为输入值,通过特征回归的方法建立目标跟踪中的判别外观模型,将跟踪图像的特征向量输入该模型,得到候选区域的置信值,从而高效地分离前景和背景,确定目标区域。
结果 在公开数据集上进行跟踪实验。本文算法能较好地处理目标尺度变化、姿态变化、光照变化、形状畸变、遮挡等外观变化;和主流跟踪算法进行对比,本文算法在跟踪误差方面表现出色,在carScale、subway、tiger1视频中能取得最好结果,平均误差为12像素,3像素和21像素;和同类型的方法相比,本文算法在算法效率上表现出色,所有视频的跟踪效率均高于同类型算法,在carScale视频中的效率,是同类算法效率的32倍。
结论 实验结果表明,本文目标跟踪算法具有高效性和鲁棒性,适用于目标发生外观变化时的目标跟踪问题。目前跟踪中只用了单一特征,未来考虑融合多特征来提升算法鲁棒性和准确度。… …
相似文献