8351.
目的 当前,目标跟踪问题常常会通过在线学习、检测的方法来解决。针对在线学习过程中,分类器训练需要花费大量时间以提高其识别准确率的问题,提出使用Adaboost算法级联弱分类器,在训练一定帧数后仅进行检测的方法来达到实时和准确的折中。
方法 首先针对跟踪问题简化了haar特征,以降低特征计算量。同时考虑到经典的Adaboost算法可能并不适合跟踪过程中存在的正负样本不均衡问题,提出在样本权重更新公式中引入一个新的调整因子项并且结合代价敏感学习来提高目标识别率的方法。最终给出使用简化的haar特征作为描述子,改进的代价敏感Adaboost作为分类器的目标跟踪算法。
结果 对20组视频进行跟踪实验,本文算法的平均代表准确率高于压缩跟踪算法约26%,高于原始代价敏感算法约11%;本文算法的视频处理平均帧率高于压缩跟踪算法约38%。
结论 本文提出的新代价敏感Adaboost算法对目标的识别、跟踪具有较高的准确率及较快的处理速度,并具有一定的抗干扰能力。特别对人等非刚性目标能够进行较好跟踪。… …
相似文献