9023.
目的 现有的车标识别算法均为各种经典的图像特征算子结合不同的分类器组合而成,均未分析车标图像的结构特点。综合考虑车标图像的灰度特征和结构特征,提出了一种前背景骨架区域随机点对策略驱动下的车标识别方法。
方法 本文算法将标准车标图像分为前景区域和背景区域,分别提取前、背景的骨架区域,在其中进行随机取点,形成点对,通过进行点对的有效性判断,提取能表示车标的点对特征。点对特征表示两点周围局部区域的相似关系,反映了实际车标成像过程中车标图案部分与背景部分的灰度明暗关系。
结果 在卡口系统截取的19 044张车标图像上进行实验,结果表明,与其他仅基于灰度特征的识别方法相比,本文提出的点对特征识别方法具有更好的识别效果,识别率达到了95.7%。在弱光照条件下,本文算法的识别算法效果同样优于其他仅基于灰度特征的识别方法,识别率达到了87.2%。
结论 本文提出的前背景骨架区域随机点对策略驱动下的车标识别方法,结合了车标图像的灰度特征和结构特征,在进行车标的描述上具有独特性和排他性,有效地提高了车标的识别率,尤其是在弱光照条件下,本文方法具有更强的鲁棒性。… …
相似文献