9580.
目的 传统的2维自然图像的增强现实算法,对模板图像的各个尺度下的整个图像提取特征点并保存到特征点数组中,跟踪阶段对模板图像提取出的所有特征点进行匹配,造成了大量的无效运算,降低了特征匹配的效率.为了解决这个问题,将模板各个尺度的图像进行区域划分,提出了一种快速定位图像尺度和区域的算法,缩小特征匹配的范围,加快3维跟踪的速度.
方法 预处理阶段,通过对图像金字塔每一尺度图像分成小区域,对模板图像上的特征点进行分层次分区域的管理.在系统实时跟踪阶段,通过计算几何算法快速确定当前摄像机图像所对应的尺度和区域,从而减小了特征匹配的范围.
结果 该方法大幅度缩小了特征匹配的范围,降低了特征匹配所消耗的时间,与传统算法相比,在模板图像分辨率较大的情况下特征匹配阶段时间可以缩短10倍左右,跟踪一帧图像的时间缩短1.82倍.系统实时跟踪过程中的帧率总体保持在15帧/s左右.
结论 提出的快速定位图像尺度和区域算法适用于移动设备上对2维自然图像的跟踪,尤其在模板图像分辨率较大的情况下,算法能够显著减小特征匹配的范围,从而提升了实时3维跟踪算法的运行效率.… …
相似文献