9912.
稀疏表示因其所具有的鲁棒性,在模式分类领域逐渐得到关注.研究了一种基于稀疏保留模型的新颖领域适应学习方法,并提出一种鲁棒的稀疏标签传播领域适应学习(sparse label propagation domain adaptation learning,简称SLPDAL)算法.SLPDAL通过将目标领域数据进行稀疏重构,以实现源领域数据标签向目标领域平滑传播.具体来讲,SLPDAL算法分为3步:首先,基于领域间数据分布均值差最小化准则寻求一个优化的核空间,并将领域数据嵌入到该核空间;然后,在该嵌入核空间,基于
l1-范最小化准则计算各领域数据的核稀疏重构系数;最后,通过保留领域数据间核稀疏重构系数约束,实现源领域数据标签向目标领域的传播.最后,将SLPDAL算法推广到多核学习框架,提出一个SLPDAL多核学习模型.在鲁棒人脸识别、视频概念检测和文本分类等领域适应学习任务上进行比较实验,所提出的方法取得了优于或可比较的学习性能.… …
相似文献