车联网与人工智能结合推动了自动驾驶汽车的快速发展. 分散于不同车辆中的车联网数据共享并用于训练人工智能模型可实现更高效、更可靠的智能驾驶服务. 自动驾驶汽车可通过车载摄像头、传感器等持续采集车辆实时信息、道路图像和视频等车联网数据,并用于优化更新智能交通模型,弥补车联网数据变化导致的模型准确度下降问题. 提出面向车联网环境下数据持续共享的高效安全联邦学习方案SEFL,以解决车联网数据采集低效、数据动态更新导致的灾难性遗忘、模型训练参数导致的隐私泄露等问题. 在方案SEFL中,车辆基于全局模型,只采集模型识别率较低的车联网数据,并以最大概率对应的输出作为该样本的标签,完成训练样本自动采集. 由于车辆存储空间有限,采集的新样本会覆盖旧样本,导致车辆上数据是动态变化的,传统微调训练方式容易引起灾难性遗忘问题. 为此,方案中设计了一种基于双重知识蒸馏的训练算法,确保模型学习到每个样本的知识,使模型保持较高的准确度. 此外,为了防止车辆与服务器之间传播的模型参数泄露用户隐私,提出了一种自适应的差分隐私策略来实现客户端级的强隐私保护,同时该方案能最大限度地减少差分隐私噪声对全局模型准确度的负面影响. 最后,进行了安全性分析并结合交通标志数据集GTSRB和车辆识别数据集对SEFL方案进行了性能评估. 实验结果表明所提出的SEFL方案能提供可靠的强隐私保护和高效的采集策略,并且在模型准确度方面要优于现有基于联邦学习的算法.
… … 相似文献