326.
藏文文本分类是藏语自然语言处理中的一项基础任务,在舆情监测、新闻推送、邮件分类等领域具有重要价值。预训练语言模型加微调的方式是目前主流的文本分类方法。然而,受限于有限的藏文标注数据和计算资源,使用该方法微调更大模型进行文本分类研究变得非常困难。针对上述问题,该文提出了一种基于双向软模板方式提示学习的藏文文本分类方法。具体来说,传统的软模板方式提示学习只在输入文本嵌入向量前面添加可优化的软模板向量,但为了适应藏文语法结构,该文方法在输入文本嵌入向量首尾都进行软模板向量拼接。通过当前藏文两个主流藏文文本分类任务(情感分类、新闻主题分类)进行验证,结果表明,该文方法对于预训练语言模型(Pre-trained Language Model,PLM)的分类效果有显著提升。尤其在少样本实验中表现出色,其中,新闻主题分类的Macro-F
1值最高提升了5.7%,情感分类的Macro-F
1值最高提升了8.3%。… …
相似文献