深度学习和物联网的融合发展有力地促进了AIoT生态的繁荣. 一方面AIoT设备为深度学习提供了海量数据资源,另一方面深度学习使得AIoT设备更加智能化. 为保护用户数据隐私和克服单个AIoT设备的资源瓶颈,联邦学习和协同推理成为了深度学习在AIoT应用场景中广泛应用的重要支撑. 联邦学习能在保护隐私的前提下有效利用用户的数据资源来训练深度学习模型,协同推理能借助多个设备的计算资源来提升推理的性能. 引入了面向AIoT的协同智能的基本概念,围绕实现高效、安全的知识传递与算力供给,总结了近十年来联邦学习和协同推理算法以及架构和隐私安全3个方面的相关技术进展,介绍了联邦学习和协同推理在AIoT应用场景中的内在联系. 从设备共用、模型共用、隐私安全机制协同和激励机制协同等方面展望了面向AIoT的协同智能的未来发展.
… … 相似文献对中国计算机大会(CNCC 2024)论坛《“人工智能+”赋能新质生产力:新、质与力的道与术》中专家发言观点进行思考,分析了新质生产力中“新” “质”和“力”的内涵,讨论了人工智能这一通用目的技术正成为新质生产力的重要引擎,重塑社会经济发展和科学研究范式变革,推动人类社会迈向“人工智能+”时代. 最后,结合中国“2030教育强国、科技强国、人才强国”的战略目标,对人工智能与新质发展力的融合发展提出若干未来展望.
… … 相似文献随着边缘计算、传感、人工智能和通信技术的迅猛发展,车辆正经历前所未有的深刻变革. 提出了一种适用于自动驾驶时代的全新计算范式——车计算. 在这一新型范式下,车辆的数据层与控制层被分离,车辆系统转向开放的计算平台,构建了支持多方协作的数据共享结构,从而打破了传统车辆系统的封闭局限,使车辆从单一的交通工具演变为支持丰富的高级应用和第三方服务的多功能移动计算平台. 全面阐述了车计算范式的核心理念,深入分析了车辆软件与计算架构的革命性演进,提供了具有应用前景的车计算实例,并介绍了在该范式支持下具有颠覆潜力的新型商业模式. 此外,深入探讨了车计算的五大核心功能:计算、通信、能源管理、传感和数据存储,以及相关的前沿技术. 最后,总结了车计算领域的关键技术挑战和广阔的机遇,期望能够激发学术界和工业界对这一创新领域的深入研究与高度关注.
… … 相似文献图对比学习因其可有效缓解数据稀疏问题被广泛应用在推荐系统中. 然而,目前大多数基于图对比学习的推荐算法均采用单一视角进行学习,这极大地限制了模型的泛化能力,且图卷积网络本身存在的过度平滑问题也影响着模型的稳定性. 基于此,提出一种融合层注意力机制的多视角图对比学习推荐方法. 一方面,该方法提出2种不同视角下的3种对比学习,在视图级视角下,通过对原始图添加随机噪声构建扰动增强视图,利用奇异值分解(singular value decomposition)重组构建SVD增强视图,对这2个增强视图进行视图级对比学习;在节点视角下,利用节点间的语义信息分别进行候选节点和候选结构邻居对比学习,并将3种对比学习辅助任务和推荐任务进行多任务学习优化,以提高节点嵌入的质量,从而提升模型的泛化能力. 另一方面,在图卷积网络学习用户和项目的节点嵌入时,采用层注意力机制的方式聚合最终的节点嵌入,提高模型的高阶连通性,以缓解过度平滑问题. 在 4 个公开数据集LastFM, Gowalla, Ifashion, Yelp上与10个经典模型进行对比,结果表明该方法在