625.
基于结构化SVM的目标跟踪因其优良的性能而受到了广泛的关注,但是现有方法存在损失函数不精确和模型漂移问题。针对这两个问题,首先提出基于DIoU损失与平滑约束的结构化SVM模型。该模型采用DIoU函数作为损失函数,利用t时刻超平面法向量w_t与t-1时刻超平面法向量w
t-1差值的L
2范数作为平滑约束。其次基于对偶坐标下降原理设计了该模型的求解算法。最后利用提出的基于DIoU损失与平滑约束的结构化SVM实现了一种多尺度目标跟踪方法。对所提出的目标跟踪方法在OTB100和VOT-ST2021数据集上进行了实验验证,实验结果表明:所提出的Scale-DCSSVM在OTB数据集上的跟踪成功率比DeepSRDCF高1.1个百分点,在VOT-ST2021上的EAO比E.T.Track高1.2个百分点。所提方法具有较优的性能。… …
相似文献