当前区块链生态飞速发展,面向公众的区块链应用服务不断增多,随着 Web3.0概念的升温,这一趋势将愈发明显. 这在给数字经济注入新活力的同时,也给区块链应用监管带来更大挑战. 区块链及其应用的技术特性以及自动化、多中心、多级多维的监管需求客观要求对Web2.0监管技术进行兼容与创新. 针对这些需求与挑战,提出了一套多链协同的“以链治链”监管框架,设计了一个由分层多级监管链和异构接入链构成的监管架构,并明确了该架构下区块链监管的基本流程;将该框架下的监管技术体系抽象成基础层、决策层、跨链层、接入层、执行层和数据层,并提出一系列对监管系统构建最为关键的监管骨干机制. 在监管框架和骨干机制的指导下开发了一套区块链应用监管系统,并通过实验和应用试点验证了系统的有效性和可行性.
… … 相似文献车联网在智慧城市建设中扮演着不可或缺的角色,汽车不仅仅是交通工具,更是大数据时代信息采集和传输的重要载体. 随着车辆采集的数据量飞速增长和人们隐私保护意识的增强,如何在车联网环境中确保用户数据安全,防止数据泄露,成为亟待解决的难题. 联邦学习采用“数据不动模型动”的方式,为保护用户隐私和实现良好性能提供了可行方案. 然而,受限于采集设备、地域环境、个人习惯的差异,多台车辆采集的数据通常表现为非独立同分布(non-independent and identically distributed,non-IID)数据,而传统的联邦学习算法在non-IID数据环境中,其模型收敛速度较慢. 针对这一挑战,提出了一种面向non-IID数据的车联网多阶段联邦学习机制,称为FedWO. 第1阶段采用联邦平均算法,使得全局模型快速达到一个基本的模型准确度;第2阶段采用联邦加权多方计算,依据各车辆的数据特性计算其在全局模型中的权重,聚合后得到性能更优的全局模型,同时采用传输控制策略,减少模型传输带来的通信开销;第3阶段为个性化计算阶段,车辆利用各自的数据进行个性化学习,微调本地模型获得与本地数据更匹配的模型. 实验采用了驾驶行为数据集进行实验评估,结果表明相较于传统方法,在non-IID数据场景下,FedWO机制保护了数据隐私,同时提高了算法的准确度.
… … 相似文献