•   按检索    检索词:    高级检索
     排序:相关度 OA 时间 被引次数 点击次数 下载次数 共有10000条符合的查询结果,以下是第9991-10000项 搜索用时 170 毫秒
[首页] « 上一页 [990] [991] [992] [993] [994] [995] [996] [997] [998] [999] 1000
9991.
目的 机器人在进行同时定位与地图构建(simultaneous localization and mapping,SLAM)时需要有效利用未知复杂环境的场景信息,针对现有SLAM算法对场景细节理解不够及建图细节信息缺失的问题,本文构造出一种将SLAM点云定位技术与语义分割网络相结合的未知环境地图构建方法,实现高精度三维地图重建。方法 首先,利用场景的实时彩色信息进行相机的位姿估计,并构造融合空间多尺度稀疏及稠密特征的深度学习网络HieSemNet(hierarchical semantic network),对未知场景信息进行语义分割,得到场景的实时二维语义信息;其次,利用深度信息和相机位姿进行空间点云估计,并将二维语义分割信息与三维点云信息融合,使语义分割的结果对应到点云的相应空间位置,构建出具有语义信息的高精度点云地图,实现三维地图重建。结果 为验证本文方法的有效性,分别针对所构造的HieSemNet网络和语义SLAM系统进行验证实验。实验结果表明,本文的网络在平均像素准确度和平均交并比上均取得了较好的精度,MPA(mean pixel accuracy)指标相较于其他网络分别提高了17.47%、11.67%、4.86%、2.90%和0.44%,MIoU(mean intersection over union)指标分别提高了13.94%、1.10%、6.28%、2.28%和0.62%。本文的SLAM算法可以获得更多的建图信息,构建的地图精度和准确度都更好。结论 本文方法充分考虑了不同尺寸物体的分割效果,提出的HieSemNet网络能有效提高场景语义分割准确性,此外,与现有的前沿语义SLAM系统相比,本文方法能够明显提高建图的精度和准确度,获得更高质量的地图。… …   相似文献
9992.
9993.
目的 精确估计热带气旋的强度有助于提升天气预报和预警的准确性。随着深度学习技术的不断发展,基于卷积神经网络(convolutional neural network,CNN)的方法已应用于强度估计任务中。然而,现有方法仍存在许多问题,例如无法充分利用不同波段的卫星图像信息、输入图像以热带气旋的定位为中心等限制,从而产生较大误差,影响实时估计的结果。针对以上问题,本文提出一种融合定位信息的强度估计网络IEFL(intensity estimation fusing location),提升强度估计的准确率。方法 模型采用双分支结构,能有效融合不同波段的图像特征,同时可以同步优化两个任务,达到互相促进的效果。此外,模型对强度估计任务做了定位的特征融合,将得到的定位特征图与强度特征图进行拼接,共同输出最后的强度结果,通过利用定位信息达到提升强度估计精度的目的。结果 本文在完成热带气旋强度估计的同时,可获取较好的热带气旋中心定位结果。收集了2015—2018年葵花-8卫星多通道图像用以训练模型,并在2019和2020年的数据上进行测试。结果表明,融合定位信息后模型的强度估计均方根误差为4.74 m/s,平均绝对误差为3.52 m/s。相比传统单一强度估计模型误差分别降低了7%和9%。结论 IEFL模型在不依赖定位准确率的同时,能够有效提升强度估计的准确率。… …   相似文献
9994.
9995.
9996.
9997.
9998.
问答系统是人工智能和自然语言处理领域中具有广泛发展前景的研究方向之一.早期的问答系统限定以自然语言形式进行提问和回答,近年来,随着多模态知识图谱、多模态预训练模型的发展,支持文字、图片、音频、视频等多种模态间信息查询的广义问答系统逐渐成为新的研究热点,其以多媒体方式展示结果,更加… …   相似文献
9999.
现有的妆容迁移算法效果优越, 功能丰富, 但是较少考虑到输入图像为低分辨率的场景. 当高分辨率图像难以获得时, 现有的妆容迁移算法将难以适用, 妆容无法完全迁移. 为此本文提出了一种适用于低分辨率图像的妆容迁移算法, 将包含妆容信息的特征矩阵作为先验信息, 将超分辨率网络与妆容迁… …   相似文献
10000.
为汽车自动驾驶提供安全高效的自动驾驶行为决策,是汽车自动驾驶领域面临的挑战性问题之一.目前,随着自动驾驶行业的蓬勃发展,工业界与学术界提出了诸多自动驾驶行为决策方法,但由于汽车自动驾驶行为决策受环境不确定因素的影响,决策本身也要求实效性及高安全性,现有的行为决策方法难以完全支撑这… …   相似文献
[首页] « 上一页 [990] [991] [992] [993] [994] [995] [996] [997] [998] [999] 1000