首页 >> 收录期刊 >> 软件学报 >> 正文
杂志中文名:软件学报
杂志英文名:Journal of Software
主管单位:中国科学院
主办单位:中国科学院软件研究所、中国计算机学会
地址:北京海淀区中关村南4街4号中科院软件所(8718信箱)
邮编:100080
电话:010-62562563 ;
Email:jos@iscas.ac.cn
ISSN:1000-9825
主编:李明树












聚类算法研究
引用本文:孙吉贵,刘 杰,赵连宇.聚类算法研究[J].软件学报,2008,19(1):48-61.
作者姓名:孙吉贵  刘 杰  赵连宇
作者单位:吉林大学,计算机科学与技术学院,吉林,长春,130012;符号计算与知识工程教育部重点实验室,吉林,长春,130012
基金项目:Supported by the National Natural Science Foundation of Chinaunder GrantNos.60473003,60573073(国家自然科学基金),the Major Research Program of National Natural Science Foundation of Chinaunder GrantNo.60496321(国家自然科学基金重大项目)
摘    要:对近年来聚类算法的研究现状与新进展进行归纳总结.一方面对近年来提出的较有代表性的聚类算法,从算法思想、关键技术和优缺点等方面进行分析概括;另一方面选择一些典型的聚类算法和一些知名的数据集,主要从正确率和运行效率两个方面进行模拟实验,并分别就同一种聚类算法、不同的数据集以及同一个数据集、不同的聚类算法的聚类情况进行对比分析.最后通过综合上述两方面信息给出聚类分析的研究热点、难点、不足和有待解决的一些问题.上述工作将为聚类分析和数据挖掘等研究提供有益的参考.

关 键 词:聚类  算法  实验
收稿时间:2007-04-24
修稿时间:8/3/2007 12:00:00 AM
作者简介:孙吉贵(1962-),男,辽宁庄河人,博士,教授,博士生导师,CCF高级会员,主要研究领域为人工智能,约束规划,决策支持系统. 刘杰(1973-),女,博士生,讲师,主要研究领域为数据挖掘,模式识别. Corresponding author: Phn: +86-431-85166478, E-mail: liu..jie@jlu.edu.cn 赵连宇(1984-),男,硕士生,主要研究领域为数据挖掘.

Clustering Algorithms Research
SUN Ji-Gui,LIU Jie and ZHAO Lian-Yu.Clustering Algorithms Research[J].Journal of Software,2008,19(1):48-61.
Authors:SUN Ji-Gui  LIU Jie  ZHAO Lian-Yu
Abstract:The research actuality and new progress in clustering algorithm in recent years are summarized in this paper. First, the analysis and induction of some representative clustering algorithms have been made from several aspects, such as the ideas of algorithm, key technology, advantage and disadvantage. On the other hand, several typical clustering algorithms and known data sets are selected, simulation experiments are implemented from both sides of accuracy and running efficiency, and clustering condition of one algorithm with different data sets is analyzed by comparing with the same clustering of the data set under different algorithms. Finally, the research hotspot, difficulty, shortage of the data clustering and some pending problems are addressed by the integration of the aforementioned two aspects information. The above work can give a valuable reference for data clustering and data mining.
Keywords:clustering  algorithm  experiment
本文献已被 CNKI 维普 万方数据 等数据库收录!
    浏览原始摘要     下载PDF全文