首页 >> 收录期刊 >> 中国图象图形学报 >> 正文
杂志中文名:中国图象图形学报
杂志英文名:Journal of Image and Graphics
主管单位:中国科学院
主办单位:中国科学院遥感应用研究所、中国图象图形学学会 、北京应用物理与计算数学研究所
地址:北京海淀中关村东路95号(北京2728信箱)
邮编:100080
电话:010-82614429;
Email:jig@irsa.ac.cn
ISSN:1006-8961
主编:李小文












低级特征和语义特征相结合的医学图像检索方法
引用本文:邵虹,崔文成,张继武,赵宏.低级特征和语义特征相结合的医学图像检索方法[J].中国图象图形学报,2004,9(2):220-224.
作者姓名:邵虹  崔文成  张继武  赵宏
作者单位:[1]东北大学软件中心,沈阳110179/沈阳工业大学信息科学与工程学院,沈阳110023 [2]沈阳工业大学信息科学与工程学院,沈阳110023 [3]中国科学院西安光学精密机械研究所,西安710068/东北大学计算机应用技术研究所,沈阳110006 [4]东北大学软件中心,沈阳110179
摘    要:提出了一种将图像本身的低级特征和语义特征描述相结合的医学图像检索方法。首先提取图像的灰度特征、矩特征和纹理特征,进一步采用遗传算法进行最优特征的选择,由于这些低层特征对图像的描述与人类对图像的描述存在较大差异,直接利用这些特征作为检索依据常得不到满意的结果,因此需要进一步提取语义特征,将影像报告中医生给出的关于图像的描述作为语义内容进行相似性检索。实验结果表明,综合低级特征和语义特征的检索比仅利用低级特征的检索更接近于人的视觉理解。

关 键 词:图像检索  语义特征  遗传算法  低级特征  医学图像
文章编号:1006-8961(2004)02-0220-05
作者简介:邵虹 1974年生,讲师,现为东北大学计算机应用专业博士研究生.主要研究领域为图像检索和多媒体数据挖掘 .崔文成 1973年生,助理研究员,现为沈阳工业大学计算机应用专业硕士研究生.主要研究领域为多媒体网络技术和信息处理.张继武 1967年生,IE EE高级会员,教授,博士生导师,1998年在西安交通大学获生物医学工程专业博士学位.现主要研究领域为计算机应用技术、医学多媒体信息处理与通信技术、医学影像自动诊断技术 .赵宏 1954年生,教授 ,博士生导师,1991年于东北工学院获计算机应用专业博士学位.主要研究领域为分布式多媒体信息系统及多媒体网络技术.

Medical Image Retrieval Based on Low Level Featuresand Semantic Features
SHAO Hong ,CUI Wen-cheng ,ZHANG Ji-wu ,ZHAO Hong ,SHAO Hong ,CUI Wen-cheng ,ZHANG Ji-wu ,ZHAO Hong ,SHAO Hong ,CUI Wen-cheng ,ZHANG Ji-wu ,ZHAO Hong and SHAO Hong ,CUI Wen-cheng ,ZHANG Ji-wu ,ZHAO Hong.Medical Image Retrieval Based on Low Level Featuresand Semantic Features[J].Journal of Image and Graphics,2004,9(2):220-224.
Authors:SHAO Hong  CUI Wen-cheng  ZHANG Ji-wu  ZHAO Hong  SHAO Hong  CUI Wen-cheng  ZHANG Ji-wu  ZHAO Hong  SHAO Hong  CUI Wen-cheng  ZHANG Ji-wu  ZHAO Hong  SHAO Hong  CUI Wen-cheng  ZHANG Ji-wu  ZHAO Hong
Abstract:In this paper, a new medical image retrieval approach based on low level features and semantic features is proposed. The low level features include gray, moment and texture features, which are selected by genetic algorithm. These features can't express the human's understanding of the images. Directly using these features can't get satisfying results, so the semantic features are needed. The image describing in the image report by doctors are chosen for semantic content. Experiment results show that the retrieval result by low features and semantic features are better than only by low features.
Keywords:content-based image retrieval  semantic features  genetic algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
    浏览原始摘要     下载PDF全文